«Первое место доказывает, что оптимизированная архитектура и качественные данные могут обеспечить отличные результаты даже при небольшом размере модели. A-Vibe создавалось оптимальной по соотношению между качеством, скоростью работы и затратой ресурсов. Такой баланс позволяет обеспечивать быструю обработку запросов даже в периоды пиковой нагрузки и масштабировать технологию на всю аудиторию платформы. Именно обучение небольшой модели под наши нужды позволяет нам закладывать окупаемость инвестиций: Авито планирует вложить в GenAI около 12 млрд рублей, а заработать более 21 млрд рублей к 2028 году», — отметил Андрей Рыбинцев, старший директор по данным и аналитике Авито.
A-Vibe обошла такие модели, как GPT-4o mini, Gemma 3 27B, Claude 3.5 Haiku, Mistral Large и другие популярные небольшие нейросети. Тестирование включало задачи различной сложности — от базового понимания текста до продвинутых лингвистических задач, требующих глубокой работы с контекстом.
Некоторые результаты тестирования MERA:
«Мы рассматриваем возможность выпуска модели в открытый доступ, что станет нашим вкладом в развитие российского рынка ИИ. Это поможет малому бизнесу внедрять передовые технологии без значительных инвестиций, образовательным учреждениям создавать прикладные программы, а независимым разработчикам строить современные сервисы на базе отечественных технологий. Для нас это возможность получить ценную обратную связь от рынка и улучшить наши модели», — комментирует Анастасия Рысьмятова, руководитель разработки больших языковых моделей «Авито».
*A-Vibe разработана ООО «Авито Тех» — ИТ-компанией группы Авито.